Integrating Galileo into drones gives surveyors a new point of view

This page has been archived and is provided for historical reference purposes only.
The content and links are no longer maintained and may now be outdated.

Published: 
22 June 2017
The tandem system mapKITE, ready to start a mission during the H2020 project test campaign ©MapKITE

The GSA-funded mapKITE project has created an advanced surveying tool by combining terrestrial mobile mapping systems with Unmanned Aerial System mapping capabilities.

Geo-information is fundamental in any modern society, with many infrastructures and services depending on it. However, it is also expensive to create and update. As a result, European, national and local government agencies must balance a growing demand for high-resolution, up-to-date geo-information against decreasing budgets.

The Horizon 2020 mapKITE project responds to this market need by combining terrestrial mobile mapping systems (TMMS) with Unmanned Aerial System (UAS) mapping capabilities. The resulting tool is a tandem terrestrial vehicle (TV) and unmanned aircraft (UA) equipped with remote sensing instruments that cooperate in collecting geo-data. The system integrates E-GNSS capabilities into drones and proposes a novel geo-data post-processing concept to provide surveyors and mappers with an end-to-end solution for 3-D high-resolution corridor mapping.

Also read: Network providers enthusiastic about Galileo at CLGE General Assembly

The GSA-funded project has now concluded after two years of development and validation, executed by a consortium of 10 companies from six different countries and coordinated by GeoNumerics. Recently, the project gathered over 40 industry specialists from world-leading mobile mapping integrators, European mapping service companies and cartographic and infrastructure management agencies to officially introduce – and demonstrate – the mapKITE system.

Introducing mapKITE

“While terrestrial mobile mapping systems are becoming a standard surveying tool, their use is restricted due to their limited and insufficient view from the ground,” said Project Coordinator Pere Molina during the event. “On the technology side, mapping of small areas via small unmanned aircraft has become a reality, with many of the big geomatic technology companies already including UAS systems in their product portfolios.”
mapKITE combines the best of both worlds by incorporating aerial and terrestrial components. The aerial component consists of a UA equipped with remote sensing instruments and a navigation guidance and control system. The terrestrial component consists of a human-operated TV that is equipped with remote sensing instruments and a TMMS.

This tandem system operates with the TV, computing a real-time trajectory by means of its real-time navigation system. By doing so, a set of waypoints are generated as route inputs for the UA by converting terrestrial navigation (time, position, velocity and attitude parameters) into UA time and space commands. This process produces a virtual tether by which the UA always follows the vehicle.

Watch this: mapKITE for total 3D mapping

As the UA follows the vehicle at a constant flying height, both can simultaneously collect geo-data. This is then post-processed via an orientation-calibration concept, resulting in the delivery of high-resolution, oriented-calibrated and integrated 3D images of corridors and their surrounding environment.

One of the system’s main benefits is that it lowers surveying budgets. “The mapKITE system does this by means of its Kinematic Ground Control Points (KGCPs), which are obtained directly from the TMMS navigation solution, entailing the elimination of expensive traditional Ground Control Points (GCPs),” explained Molina. “What this means for the user is the longer the corridor mapping mission, the higher the savings are while also keeping similarly accurate results.”

Benefiting from EGNOS and Galileo

The mapKITE system’s combination of both ground and aerial based surveying systems provides users with an integrated and powerful solution. To accomplish this, the project fully exploits such GNSS technology as EGNOS and Galileo. “As an enabling component of mapKITE, EGNOS provides the desired level of accuracy for the terrestrial navigation solution and for the UA guidance,” said GSA Market Development Officer Alina Hriscu, who spoke at the launch event and demonstration, providing the latest insights about European GNSS and its uses for mapping and surveying applications. Hriscu also noted that the Galileo E5 AltBOC signals, which are superior to existing and planned GPS signals, are of particular interest to the mapKITE system because of the robustness they provide against multipath errors at the ground level. This makes them essential for accurate mapping in natural or man-made corridors, something that was confirmed during tests of mapKITE.

“This is a brand new way of acquiring geo-data and processing it in order to derive geo-information that would not make sense without E-GNSS,” added Molina. “We also must highlight the critical role of GNSS timing, due to the need to synchronise the TV’s trajectory solution to the central time of exposure of the UA remote sensing instruments.” 

A game changer

Due to its operational simplicity and cost savings, mapKITE is positioned to be a game changer – a fact clearly on display at the launch event. Here, surveyors saw first-hand how they can cut costs by eliminating the need to independently operate terrestrial and aerial systems. “What we witnessed today was the launch of a new era of drone information technology that will prove to be a game changer in the development of our digital society,” said Jan Skaloud of the Ecole Polytechnique Federal de Lausanne. “The mapKITE system has answered the challenge of linking mobile mapping technology with the airborne mapping technology that is now accessible to users via drones.”

Watch this: Presenting a new mapping paradigm to the world

“If we think about the Internet of Things and Smart Cities, it’s really geospatial data that will become the heartbeat of a city, allowing one to measure and assess what’s going,” added Trimble’s Christian Hoffmann. “Systems like mapKITE, which offers specific vertical applications for corridor mapping or asset management, for example, is the answer to getting this data.”

Engemap, a Brazilian road mapping company and early-adapter of mapKITE, presented a case study of its success using the system. Antonio Lira, project and business manager in Engemap, presented the key features of the Brazilian corridor mapping requirements and market and highlighted how mapKITE absolutely fits as an all-in-one solution. During the two trials, Engemap used a mapKITE prototype to successfully map several kilometres of road, achieving satisfactory levels of efficiency.

“Simply put, the mapKITE idea of combining a mobile system with a classic system of aerial image acquisition is quite brilliant,” concluded Senior Mapping Expert Josep Lluis Colomer.

As mapKITE now turns its focus towards marketization, it has been patented by GeoNumerics in Spain and the US, with patent applications in Europe and Brazil pending.

Media note: This feature can be republished without charge provided the European GNSS Agency (GSA) is acknowledged as the source at the top or the bottom of the story. You must request permission before you use any of the photographs on the site. If you republish, we would be grateful if you could link back to the GSA website (http://www.gsa.europa.eu).

Updated: Jun 22, 2017