European GNSS and the environment

This page has been archived and is provided for historical reference purposes only.
The content and links are no longer maintained and may now be outdated.

24 May 2018
From transport to agriculture, EGNSS contributes to improved environmental performance.

With the 2018 edition of the European Union’s annual Green Week taking place across Europe from 21 to 25 May it is timely to consider the contributions that the European GNSS (EGNSS) – EGNOS and Galileo - are making to improving and protecting our environment.

The 2018 Green Week takes as its main theme ‘Green Cities for a Greener Future’ and will be exploring the ways in which the EU is helping cities to become better places to live and work. To be a Green City an urban area must be a Smart City: a city with smart mobility and connected services.

Mobility is an important part of everyone's daily lives. EGNSS, including EGNOS, is making life on the road easier by significantly reducing congestion and, consequently, reducing greenhouse gas emissions such as carbon dioxide (CO2). EGNOS and Galileo are helping urban authorities to improve the efficiency of road transportation through navigation, fleet management opportunities and satellite road traffic monitoring.

Read this: Galileo: a critical component for autonomous driving

Location, location, location

The enhanced positioning capabilities of EGNSS is a key element in the safe and sustainable development of autonomous vehicles. These vehicles, ranging from passenger carriers to drone parcel delivery services, will help to further reduce congestion and pollution.

EGNSS technologies and location-based services are now becoming ubiquitous in urban areas. All mass market electronic devices, from smartphones and wearable devices, such as fitness monitors, to traffic lights and other components of the expanding Internet of Things (IoT), now have the capability to broadcast their location. This enables the provision of a new generation of location-based smart services for citizens and corporations that includes health and well-being monitoring and security applications and the control and optimisation of energy systems.

Sustainable development

Globally EGNSS is working with its sister programme Copernicus, Europe’s Earth Observation programme, to help the world meet the United Nations Sustainable Development Goals (SDGs) that include a range of environmental targets.

The combination of Galileo’s high accuracy positioning and navigation with Copernicus’ services and analysis is increasingly creating opportunities in nearly every market segment. From providing the maps needed for finding the best locations for renewable energy infrastructure to outlining the most fuel-efficient flight paths, optimising road transportation routes and monitoring CO2 emissions, applications using both EGNSS and Earth Observation are providing answers to environmental issues.

A recent study, “EGNSS and COPERNICUS: Supporting the Sustainable Development Goals. Building blocks towards the 2030 Agenda”, showed how EU space technologies support the fulfilment of the UN SDGs. The analysis shows that all the SDGs are positively impacted by the benefits stemming from the use of EGNSS and Copernicus applications and that almost 40% of the associated indicators directly benefit from using their services, either supporting the monitoring of the status of achievement of a given SDG or actively contributing to their fulfilment.

Also read: Boosting EGNOS for better precision farming

Escape to the country

Closer to home, today, some 72% of European Precision Agriculture farmers rely on EGNOS to enhance precision agriculture: a solution for higher productivity and farm profitability. The main EGNSS application for precision agriculture is tractor guidance and automated tractor steering. Combined with Earth Observation data this allows, for example, highly efficient and reduced distribution of chemical fertilizer reducing environmental impact.

The detection of reflected GNSS signals can also directly measure soil moisture. This technique, called GNSS-R, can be used in all terrains to map soil humidity and optimise water resource management. It can also be used to monitor vulnerable wetlands for conservation purposes or flooded areas during an emergency.

Read more: GSA-funded GNSS-R project Mistrale

The ability to predict landslides and implement early interventions is critical when it comes to saving human lives and reducing damage. The sister EU programmes offer joint solutions for monitoring land movements: EGNSS provides highly accurate horizontal displacements, while Copernicus’s In-SAR data detects vertical displacements. This data can be used to formulate early warnings and to support timely interventions.

Media note: This feature can be republished without charge provided the European GNSS Agency (GSA) is acknowledged as the source at the top or the bottom of the story. You must request permission before you use any of the photographs on the site. If you republish, we would be grateful if you could link back to the GSA website (

Updated: May 24, 2018